Special cases for power in an AC circuit
Special cases for power in an AC circuit
1. Pure resistive circuit
Here the voltage and current are in same phase, I. E., phie = 0 and cos(phie) = 1
Pav = Erms × Irms × 1 = Erms × Irms = Erms × Erms/R
2. Pure inductive circuitcircuit
Here the voltage leads the current in phase by π/2, I. E., phie = π/2
Pav = Erms × Irms cos(π/2) = 0
Thus the average power consumed in an inductive circuit over a complete cycle is zero.
3. Pure capacitive circuit
Here the voltage lags behind the current in phase by π/2, I. E., phie = -π/2
Pav = Erms × Irms cos(-π/2) = 0
Thus the average power consumed in a capacitive circuit over a complete cycle is also zero.
4. Series LCR circuit
For a series LCR - circuit,
Pav = Erms × Irms × cos(phie), where phie = 1/tan((xL -xC)/R)
So, phie may have a non - zero value for series LR-, RC- and LCR- circuits. Some power is consumed in such circuits, but only in the resistor R.
5. Power dissipated at resonance in LCR-circuit
At resonance, xL - xC, and phie = 0. So cos(phie) = 1, and pav = Erms Irms. That is, maximum power is dissipated in the circuit (through R) at resonance.
Power factor
The power factor is defined as the ratio of true power to the apparent power of an AC circuit. It is equal to the cosine of the phase angle between current and boltage in the AC circuit. It is given by
Cos(phie) = true power/ apparent power = pav/Vrms Irms
For a series LCR circuit, power factor is
Cos(phie) = R/Z = R/[R×R + (wL - 1/wC) (wL - wC)] where, denominator bracket has power of 1/2.
(b) for a purely inductive or capacitive circuit, phie = 90
Thus the power factor assumes the minimum value for a purely inductive or capacitive circuit.
For a purely resistive circuit, phie = 0 degree power factor = cos 0 = 1
Thus the power factor assumes the maximum value for a purely resistive circuit.
Wattless current
The current in an AC circuit is said to be wattless if the average power consumed in the circuit is zero. It is the component Irms sin(phie) of the alternating current. In an inductive or capacitive AC circuit, the phase difference between voltage and current, phie = +-π/2 power factor, cos(phie) = 0 and so the current is wattless.
Comments
Post a Comment
If you have any doubts, please let me know